Early Pleistocene faunivorous hominins were not kleptoparasitic, and this impacted the evolution of human anatomy and socio-ecology
Interaction with learners

Early Pleistocene faunivorous hominins were not kleptoparasitic, and this impacted the evolution of human anatomy and socio-ecology

  • 1.

    Domínguez-Rodrigo, M., Barba, R. & Egeland, C. P. Deconstructing Olduvai: a taphonomic study of the Bed I sites (Springer Science & Business Media, 2007).

    Book 

    Google Scholar

  • 2.

    Domínguez-Rodrigo, M. & Pickering, T. R. The meat of the matter: An evolutionary perspective on human carnivory. Azania 2, 1–29 (2021).

    Google Scholar

  • 3.

    Egeland, C. P. Model hominid lifeways during the Oldowan. Stone Tools Fossil Bones 80, 2 (2012).

    Google Scholar

  • 4.

    Ferraro, J. V. et al. Earliest archaeological evidence of persistent hominin carnivory. PLoS ONE 8, e62174 (2013).

    ADS
    CAS
    PubMed
    PubMed Central
    Article 

    Google Scholar

  • 5.

    Domínguez-Rodrigo, M. Taphonomy in early African archaeological sites: Questioning some bone surface modification models for inferring fossil hominin and carnivore feeding interactions. J. Afr. Earth. Sci. 108, 42–46 (2015).

    Article 

    Google Scholar

  • 6.

    Oliver, J. S., Plummer, T. W., Hertel, F. & Bishop, L. C. Bovid mortality patterns from Kanjera South, Homa Peninsula, Kenya and FLK-Zinj, Olduvai Gorge, Tanzania: Evidence for habitat mediated variability in Oldowan hominin hunting and scavenging behavior. J. Hum. Evol. 131, 61–75 (2019).

    PubMed
    Article
    PubMed Central 

    Google Scholar

  • 7.

    Pobiner, B. L. The zooarchaeology and paleoecology of early hominin scavenging. Evol. Anthropol. 29, 68–82 (2020).

    PubMed
    Article
    PubMed Central 

    Google Scholar

  • 8.

    Aiello, L. C. & Wheeler, P. The expensive-tissue hypothesis: The brain and the digestive system in human and primate evolution. Curr. Anthropol. 36, 199–221 (1995).

    Article 

    Google Scholar

  • 9.

    Brains and guts in human evolution. The expensive tissue hypothesis. Braz. J. Genet. 20, 2 (1997).

    Google Scholar

  • 10.

    Aiello, L. C., Bates, N. & Joffe, T. In defense of the expensive tissue hypothesis. In Evolutionary anatomy of the primate cerebral cortex 57–78 (Cambridge University Press, 2001).

    Chapter 

    Google Scholar

  • 11.

    Aiello, L. C. Notes on the implications of the expensive tissue hypothesis for human biological and social evolution. Guts Brains 2, 17–28 (2007).

    Google Scholar

  • 12.

    Konarzewski, M., Goncerzewicz, A., Knapska, E., Dzik, J. & Rkiewicz, T. G. Energetic costs of cognitive abilities: Testing the expensive tissue hypothesis. Authorea. https://doi.org/10.22541/au.159069206.66900218 (2020).

    Article 

    Google Scholar

  • 13.

    Roebroeks, W. Guts and brains: An integrative approach to the hominin record (Amsterdam University Press, 2007).

    Book 

    Google Scholar

  • 14.

    Pontzer, H. Ecological energetics in early homo. Curr. Anthropol. 53, S346–S358 (2012).

    Article 

    Google Scholar

  • 15.

    Antón, S. C., Potts, R. & Aiello, L. C. Human evolution. Evolution of early Homo: An integrated biological perspective. Science 345, 1236828 (2014).

    PubMed
    Article
    CAS
    PubMed Central 

    Google Scholar

  • 16.

    de Heinzelin, J. et al. Environment and behavior of 2.5-million-year-old Bouri hominids. Science 284, 625–629 (1999).

    ADS
    PubMed
    Article
    PubMed Central 

    Google Scholar

  • 17.

    Domínguez-Rodrigo, M., Pickering, T. R., Semaw, S. & Rogers, M. J. Cutmarked bones from Pliocene archaeological sites at Gona, Afar, Ethiopia: Implications for the function of the world’s oldest stone tools. J. Hum. Evol. 48, 109–121 (2005).

    PubMed
    Article
    PubMed Central 

    Google Scholar

  • 18.

    Navarrete, A., van Schaik, C. P. & Isler, K. Energetics and the evolution of human brain size. Nature 480, 91–93 (2011).

    ADS
    CAS
    PubMed
    Article
    PubMed Central 

    Google Scholar

  • 19.

    Potts, R. Early Hominid Activities at Olduvai (AldineTransaction, 1988).

    Google Scholar

  • 20.

    Binford, L. R. Bones: Ancient Men and Modern Myths (Academic Press, 2014).

    Google Scholar

  • 21.

    Isaac, G. The food-sharing behavior of protohuman hominids. Sci. Am. 238, 90–108 (1978).

    CAS
    PubMed
    Article
    PubMed Central 

    Google Scholar

  • 22.

    Blumenschine, R. J. Percussion marks, tooth marks, and experimental determinations of the timing of hominid and carnivore access to long bones at FLK Zinjanthropus, Olduvai Gorge, Tanzania. J. Hum. Evol. 29, 21–51 (1995).

    Article 

    Google Scholar

  • 23.

    Capaldo, S. D. Experimental determinations of carcass processing by Plio-Pleistocene hominids and carnivores at FLK 22 (Zinjanthropus). Olduvai Gorge, Tanzania. J. Hum. Evol. 33, 555–597 (1997).

    CAS
    PubMed
    Article
    PubMed Central 

    Google Scholar

  • 24.

    Selvaggio, M. M. Carnivore tooth marks and stone tool butchery marks on scavenged bones: Archaeological implications. J. Hum. Evol. 27, 215–228 (1994).

    Article 

    Google Scholar

  • 25.

    Pante, M. C., Blumenschine, R. J., Capaldo, S. D. & Scott, R. S. Validation of bone surface modification models for inferring fossil hominin and carnivore feeding interactions, with reapplication to FLK 22, Olduvai Gorge, Tanzania. J. Hum. Evol. 63, 395–407 (2012).

    PubMed
    Article
    PubMed Central 

    Google Scholar

  • 26.

    Pobiner, B. L. New actualistic data on the ecology and energetics of hominin scavenging opportunities. J. Hum. Evol. 80, 1–16 (2015).

    PubMed
    Article
    PubMed Central 

    Google Scholar

  • 27.

    Martínez-Navarro, B. Early Pleistocene Faunas of Eurasia and Hominin Dispersals. In Out of Africa I: The First Hominin Colonization of Eurasia (eds Fleagle, J. G. et al.) 207–224 (Springer, 2010).

    Chapter 

    Google Scholar

  • 28.

    Navarro, B. M. & Palmqvist, P. Presence of the African MachairodontMegantereon whitei (Broom, 1937)(Felidae, Carnivora, Mammalia) in the Lower Pleistocene Site of Venta Micena (Orce, Granada, Spain), with some Considerations on the Origin, Evolution and Dispersal of the Genus. J. Archaeol. Sci. 22, 569–582 (1995).

    Article 

    Google Scholar

  • 29.

    Arribas, A. & Palmqvist, P. On the ecological connection between sabre-tooths and hominids: Faunal dispersal events in the lower pleistocene and a review of the evidence for the first human arrival in Europe. J. Archaeol. Sci. 26, 571–585 (1999).

    Article 

    Google Scholar

  • 30.

    Espigares, M. P. et al. The earliest cut marks of Europe: A discussion on hominin subsistence patterns in the Orce sites (Baza basin, SE Spain). Sci. Rep. 9, 2 (2019).

    Article
    CAS 

    Google Scholar

  • 31.

    Blumenschine, R. J. Early hominid scavenging opportunities: implications of carcass availability in the Serengeti and Ngorongoro ecosystems Vol. 283 (British Archaeological Reports, 1986).

    Book 

    Google Scholar

  • 32.

    Stanford, C. B. & Bunn, H. T. Meat-Eating and Human Evolution (Oxford University Press, 2001).

    Google Scholar

  • 33.

    Parkinson, J. A. Revisiting the hunting-versus-scavenging debate at FLK Zinj: A GIS spatial analysis of bone surface modifications produced by hominins and carnivores in the FLK 22 assemblage, Olduvai Gorge Tanzania. Palaeogeogr. Palaeoclimatol. Palaeoecol. 511, 29–51 (2018).

    Article 

    Google Scholar

  • 34.

    Pickering, T. R. Rough and Tumble: Aggression, Hunting, and Human Evolution (University of California Press, 2013).

    Book 

    Google Scholar

  • 35.

    Domínguez-Rodrigo, M. & Pickering, T. R. Early hominid hunting and scavenging: a zooarcheological review. Evol. Anthropol. 12, 275–282 (2003).

    Article 

    Google Scholar

  • 36.

    Domínguez-Rodrigo, M. et al. On meat eating and human evolution: A taphonomic analysis of BK4b (Upper Bed II, Olduvai Gorge, Tanzania), and its bearing on hominin megafaunal consumption. Quat. Int. 322–323, 129–152 (2014).

    Article 

    Google Scholar

  • 37.

    Domínguez-Rodrigo, M., Bunn, H. T. & Yravedra, J. A critical re-evaluation of bone surface modification models for inferring fossil hominin and carnivore interactions through a multivariate approach: Application to the FLK Zinj archaeofaunal assemblage (Olduvai Gorge, Tanzania). Quat. Int. 322–323, 32–43 (2014).

    Article 

    Google Scholar

  • 38.

    Organista, E. et al. Did Homo erectus kill a Pelorovis herd at BK (Olduvai Gorge)? A taphonomic study of BK5. Archaeol. Anthropol. Sci. 2, 1–24 (2015).

    Google Scholar

  • 39.

    Organista, E. et al. Biotic and abiotic processes affecting the formation of BK Level 4c (Bed II, Olduvai Gorge) and their bearing on hominin behavior at the site. Palaeogeogr. Palaeoclimatol. Palaeoecol. https://doi.org/10.1016/j.palaeo.2017.03.001 (2017).

    Article 

    Google Scholar

  • 40.

    Dominguez-Rodrigo, M. & Pickering, T. R. The meat of the matter: An evolutionary perspective on human carnivory. Azania 52, 4–32 (2017).

    Article 

    Google Scholar

  • 41.

    Domínguez-Rodrigo, M. Hunting and scavenging by early humans: The state of the debate. J. World Prehist. 16, 1–54 (2002).

    Article 

    Google Scholar

  • 42.

    Capaldo, S. D. Methods, marks, and models for inferring hominid and carnivore behavior. J. Hum. Evol. 35, 317–320 (1998).

    CAS
    PubMed
    Article 

    Google Scholar

  • 43.

    Lyman, R. L. Archaeofaunas and butchery studies: A taphonomic perspective. Adv. Archeol. Method Theory 10, 249–337 (1987).

    Article 

    Google Scholar

  • 44.

    James, E. C. & Thompson, J. C. On bad terms: Problems and solutions within zooarchaeological bone surface modification studies. Environ. Archaeol. 20, 89–103 (2015).

    Article 

    Google Scholar

  • 45.

    Domínguez-Rodrigo, M. Are all Oldowan Sites Palimpsests? If so, what can they tell us about Hominid Carnivory? In Interdisciplinary Approaches to the Oldowan (eds Hovers, E. & Braun, D. R.) 129–147 (Springer, 2009).

    Chapter 

    Google Scholar

  • 46.

    Pizarro-Monzo, M. et al. Do human butchery patterns exist? A study of the interaction of randomness and channelling in the distribution of cut marks on long bones. J. R. Soc. Interface 18, 20200958 (2021).

    PubMed
    Article
    PubMed Central 

    Google Scholar

  • 47.

    Beauchamp, G. Social Predation: How Group Living Benefits Predators and Prey (Elsevier, 2013).

    Google Scholar

  • 48.

    Nishimura, K. Kleptoparasitism and cannibalism. Encyclopedia of Animal Behavior, M. D. Breed & J. Moore eds. 253–258 (2010).

    Chapter 

    Google Scholar

  • 49.

    Domínguez-Rodrigo, M. A study of carnivore competition in riparian and open habitats of modern savannas and its implications for hominid behavioral modelling. J. Hum. Evol. 40, 77–98 (2001).

    PubMed
    Article
    PubMed Central 

    Google Scholar

  • 50.

    Gidna, A. O., Kisui, B., Mabulla, A., Musiba, C. & Domínguez-Rodrigo, M. An ecological neo-taphonomic study of carcass consumption by lions in Tarangire National Park (Tanzania) and its relevance for human evolutionary biology. Quat. Int. 322–323, 167–180 (2014).

    Article 

    Google Scholar

  • 51.

    Schaller, G. B. The Serengeti Lion; a Study of Predator-Prey Relations. Chicago University Press, Chicago (1972).

    Google Scholar

  • 52.

    Ungar, P. S. Dental evidence for the reconstruction of diet in African early Homo. Curr. Anthropol. 53, S318–S329 (2012).

    Article 

    Google Scholar

  • 53.

    Zink, K. D. & Lieberman, D. E. Impact of meat and Lower Palaeolithic food processing techniques on chewing in humans. Nature 531, 500–503 (2016).

    ADS
    CAS
    PubMed
    Article
    PubMed Central 

    Google Scholar

  • 54.

    Fonseca-Azevedo, K. & Herculano-Houzel, S. Metabolic constraint imposes tradeoff between body size and number of brain neurons in human evolution. Proc. Natl. Acad. Sci. U.S.A. 109, 18571–18576 (2012).

    ADS
    CAS
    PubMed
    PubMed Central
    Article 

    Google Scholar

  • 55.

    Domínguez-Rodrigo, M. et al. Earliest modern human-like hand bone from a new >1.84-million-year-old site at Olduvai in Tanzania. Nat. Commun. 6, 7987 (2015).

    ADS
    PubMed
    Article
    CAS
    PubMed Central 

    Google Scholar

  • 56.

    Herries, A. I. R. et al. Contemporaneity of Australopithecus, Paranthropus, and early Homo erectus in South Africa. Science 368, 2 (2020).

    Article
    CAS 

    Google Scholar

  • 57.

    Bramble, D. M. & Lieberman, D. E. Endurance running and the evolution of Homo. Nature 432, 345–352 (2004).

    ADS
    CAS
    PubMed
    Article
    PubMed Central 

    Google Scholar

  • 58.

    Lieberman, D. E., Bramble, D. M., Raichlen, D. A. & Shea, J. J. Brains, Brawn, and the Evolution of Human Endurance Running Capabilities. In The First Humans – Origin and Early Evolution of the Genus Homo 77–92 (Springer, 2009).

    Chapter 

    Google Scholar

  • 59.

    Roach, N. T. & Richmond, B. G. Clavicle length, throwing performance and the reconstruction of the Homo erectus shoulder. J. Hum. Evol. 80, 107–113 (2015).

    PubMed
    Article
    PubMed Central 

    Google Scholar

  • 60.

    Larson, S. G. Evolutionary transformation of the hominin shoulder. Evol. Anthropol. 16, 172–187 (2007).

    Article 

    Google Scholar

  • 61.

    Larson, S. G. Evolution of the Hominin Shoulder: Early Homo. In The First Humans—Origin and Early Evolution of the Genus Homo 65–75 (Springer, 2009).

    Chapter 

    Google Scholar

  • 62.

    Roach, N. T., Venkadesan, M., Rainbow, M. J. & Lieberman, D. E. Elastic energy storage in the shoulder and the evolution of high-speed throwing in Homo. Nature 498, 483–486 (2013).

    ADS
    CAS
    PubMed
    PubMed Central
    Article 

    Google Scholar

  • 63.

    Domínguez-Rodrigo, M. et al. Earliest porotic hyperostosis on a 1.5-million-year-old hominin, Olduvai Gorge, Tanzania. PLoS ONE 7(10), e46414. https://doi.org/10.1371/journal.pone.0046414 (2012).

    ADS
    CAS
    Article
    PubMed
    PubMed Central 

    Google Scholar

  • 64.

    Wiedeman, A. M. et al. Dietary choline intake: Current state of knowledge across the life cycle. Nutrients 10, 2 (2018).

    Google Scholar

  • 65.

    Derbyshire, E. Could we be overlooking a potential choline crisis in the United Kingdom?. BMJ Nutr. Prev. Health 2, 86–89 (2019).

    PubMed
    PubMed Central
    Article 

    Google Scholar

  • 66.

    Hoberg, E. P. Taenia tapeworms: Their biology, evolution and socioeconomic significance. Microbes Infect. 4, 859–866 (2002).

    PubMed
    Article
    PubMed Central 

    Google Scholar

  • 67.

    Hoberg, E. P. Phylogeny of Taenia: Species definitions and origins of human parasites. Parasitol. Int. 55(Suppl), S23-30 (2006).

    PubMed
    Article
    PubMed Central 

    Google Scholar

  • 68.

    Finch, C. E. & Stanford, C. B. Meat-adaptive genes and the evolution of slower aging in humans. Q. Rev. Biol. 79, 3–50 (2004).

    CAS
    PubMed
    Article
    PubMed Central 

    Google Scholar

  • 69.

    Finch, C. E. & Stanford, C. B. Lipoprotein genes and diet in the evolution of human intelligence and longevity. In Brain and Longevity 33–67 (Springer, 2003).

    Chapter 

    Google Scholar

  • 70.

    Zaramela, L. S. et al. Gut bacteria responding to dietary change encode sialidases that exhibit preference for red meat-associated carbohydrates. Nat. Microbiol. 4, 2082–2089 (2019).

    PubMed
    PubMed Central
    Article
    CAS 

    Google Scholar

  • 71.

    Lomangino, K. Gut bacteria, red meat, and CVD. Clin. Nutr. INSIGHT 39, 7–8 (2013).

    Google Scholar

  • 72.

    Senghor, B., Sokhna, C., Ruimy, R. & Lagier, J.-C. Gut microbiota diversity according to dietary habits and geographical provenance. Hum. Microb. J. 7–8, 1–9 (2018).

    Google Scholar

  • 73.

    Flower, T. P., Child, M. F. & Ridley, A. R. The ecological economics of kleptoparasitism: Pay-offs from self-foraging versus kleptoparasitism. J. Anim. Ecol. 82, 245–255 (2013).

    PubMed
    Article
    PubMed Central 

    Google Scholar

  • 74.

    Broom, M. & Ruxton, G. D. Evolutionarily stable kleptoparasitism: Consequences of different prey types. Behav. Ecol. 14, 23–33 (2003).

    Article 

    Google Scholar

  • 75.

    Carbone, C. et al. Feeding success of African wild dogs (Lycaon pictus) in the Serengeti: The effects of group size and kleptoparasitism. J. Zool. 266, 153–161 (2005).

    Article 

    Google Scholar

  • 76.

    Vucetich, J. A., Peterson, R. O. & Waite, T. A. Raven scavenging favours group foraging in wolves. Anim. Behav. 67, 1117–1126 (2004).

    Article 

    Google Scholar

  • 77.

    Mills, M. G. L. Kalahari Hyenas: Comparative Behavioral Ecology of Two Species (Blackburn Press, 2003).

    Google Scholar

  • 78.

    Werdelin, L. & Lewis, M. E. Temporal change in functional richness and evenness in the eastern African plio-pleistocene carnivoran guild. PLoS ONE 8, e57944 (2013).

    ADS
    CAS
    PubMed
    PubMed Central
    Article 

    Google Scholar

  • 79.

    Faurby, S., Silvestro, D., Werdelin, L. & Antonelli, A. Brain expansion in early hominins predicts carnivore extinctions in East Africa. Ecol. Lett. 23, 537–544 (2020).

    PubMed
    PubMed Central
    Article 

    Google Scholar

  • 80.

    De Cuyper, A. et al. Predator size and prey size-gut capacity ratios determine kill frequency and carcass production in terrestrial carnivorous mammals. Oikos 128, 13–22 (2019).

    Article 

    Google Scholar

  • 81.

    Vézina, A. F. Empirical relationships between predator and prey size among terrestrial vertebrate predators. Oecologia 67, 555–565 (1985).

    ADS
    PubMed
    Article
    PubMed Central 

    Google Scholar

  • 82.

    Tsai, C., Hsieh, C. & Nakazawa, T. Predator–prey mass ratio revisited: Does preference of relative prey body size depend on individual predator size?. Funct. Ecol. 30, 1979–1987 (2016).

    Article 

    Google Scholar

  • 83.

    Portalier, S. M. J., Fussmann, G. F., Loreau, M. & Cherif, M. The mechanics of predator-prey interactions: First principles of physics predict predator-prey size ratios. Funct. Ecol. 33, 323–334. https://doi.org/10.1101/313239 (2019).

    Article 

    Google Scholar

  • 84.

    Loveridge, A. J. et al. Changes in home range size of African lions in relation to pride size and prey biomass in a semi-arid savanna. Ecography https://doi.org/10.1111/j.1600-0587.2009.05745.x (2009).

    Article 

    Google Scholar

  • 85.

    Faith, T., Rowan, J., Du, A. & Barr, A. The uncertain case for human-driven extinctions prior to Homo sapiens. Quatern. Res. 96, 80–104 (2020).

    ADS
    Article 

    Google Scholar

  • 86.

    Maxwell, S. J., Hopley, P., Upchurch, P. & Soligo, C. Sporadic sampling, not climatic forcing, drives observed early hominin diversity. Proc. Natl. Acad. Sci. 115, 4891–4896 (2018).

    CAS
    PubMed
    PubMed Central
    Article 

    Google Scholar

  • 87.

    Viranta, S. Geographic and temporal ranges of middle and late miocene carnivores. J. Mammal. 84, 1267–1278 (2003).

    Article 

    Google Scholar

  • 88.

    Domínguez-Rodrigo, M., Egeland, C. P., Cobo, L., Baquedano, E., Hulbert, R. Sabertooth carcass consumption behavior and the dynamics of Pleistocene large carnivoran guilds. Quaternary Science Review (under review).

  • 89.

    Thompson, J. C., Carvalho, S., Marean, C. W. & Alemseged, Z. Origins of the human predatory pattern: The transition to large-animal exploitation by early hominins. Curr. Anthropol. 60, 1–23 (2019).

    Article 

    Google Scholar

  • 90.

    Domínguez-Rodrigo, M., Alcalá, L. & Luque, L. Peninj: A Research Project on the Archaeology of Human Origins (1995–2005) (Oxbow, 2009).

    Google Scholar

  • 91.

    Domínguez-Rodrigo, M. et al. Unraveling hominin behavior at another anthropogenic site from Olduvai Gorge (Tanzania): New archaeological and taphonomic research at BK, Upper Bed II. J. Hum. Evol. 57, 260–283 (2009).

    PubMed
    Article
    PubMed Central 

    Google Scholar

  • 92.

    Pickering, T. R., Domínguez-Rodrigo, M., Egeland, C. P. & Brain, C. K. New data and ideas on the foraging behaviour of early hominids at Swartkrans Member 3, South Africa. S. Afr. J. Sci. 100, 215–219 (2004).

    Google Scholar